Volume 2, Chapter 15: Orbit Determination®
1. Introduction

An Earthsatellite collecting GPS data with an onboard receiver can compute its state in a diversity
of ways, the choice depending in part cm the type of orbit and mission requirements. Tracking and
navigation requircments fora typical mission may include real time state knowledge and active
control during launch and orbit insertion {Axelrad and Parkinson, 1989) and during rc-entry and
landing; real time relative navigation between vehicles during rendezvous (Hesper et al., 1992;
Axclrad and Kelley, 1986); autonomous stationkecping and near real time orbit knowledge for
operations and orbit maintenance (Chao ctal., 1992); rapid post-maneuver orbit recovery (Lichten
ct a., 1993); and after-the-fact precise orbit determination for scientific analysis (Yuncket al.,
1985; Schreiner et al., 1992). Orbit accuracy requirements can range from hundreds of meters or
more for routine operations to a fcw centimeters to support precise ocean altimetry. Uniquely
among existing tracking systems, GPS can meet the most stringent of these needs for the most
dynamically unpredictable vehicles. An overview of GPS space applications is given in Munjal et
al. (1992).

The GPS signal becamwidths extend roughly 3000 km beyond the earth's limb to enable an earth
orbiter below that altitude to receive continuous threc-dimensional coverage. Above 3000 km
altitude, coverage begins to degrade. This chapter focuses on orbit estimation for satellites in low
circular orbits, below afcw thousand kilometers, with emphasis on the high accuracy that GPS so
ably provides. Real time techniques fall under what wc shall call direct GPS orbit determination,
in which only the GPS data collected by the orbiter are used in the solution. For precise after-the-
fact solutions wc turn to a form of differential GPSin which data collected at multiple ground sites
are combined with the user data to reduce the overall error. We also examine briefly the adaptation
of GPS tracking techniques to satellites in highly eliptical and geosynchronous orbits.

The potential of GPS to provide accurate and autonomous satellite orbit de.termination was noted
early in its development, for example, by Parkinson ( 1976). Early studies of direct GPS-based
tracking include those by Farr ( 1979), who surveyed applications from near Earthto beyond
geosynchronous altitudes; Van Lecuween et al. (1979), who examined GPS tracking of the Space
Shuttle; Tapley ( 1980), who focused on autonomous near Earth navigation; Wooden and Teles
(11980), who described NASA’s first planned GPS orbital application to I.andsat-4; Kurzhals and
Fuchs (1 19'81 ), who compared the potential of GPS and NASA'’s Tracking and Data Relay Satellite
System (TDRSS) for onboard navigation; Masson etal. (1 982), who discussed flight receiver
requircments and expected onboard orbit accuracies from near Earth to geosynchronous altitude;
and Jorgensen ( 1982), who addressed geosynchronous applications, The first reported results
from dircct GPS tracking were those of the Landsat-4 experiment (Heuberger and Church, 1983;
fiang and Scifert, 1985), which achieved approximately 20 m accuracy during the relatively brief
periods of good GPS visibility at that time.

Among the first descriptions of precise orbit determination at the level of several decimeters or
better by differential GPS techniques arc those by Ondrasik and Wu ( 1982), who proposed a sub-

* Thomas 1'. Yunck, Jet Propulsion I.aboratory, California institute of Technology




decimeter carrier phase-based technique for the Topex (later Topex/Poseidon) ocean altimetry
mission; Anandaand Chernick ( 1982), who examined differential tracking of alow altitude orbiter;
Wu ( 1985), who proposed differential techniques for high altitude satellites; and Yunckct al.
( 1985), who surveyed a variety of differential GPS applications. Since then, several important
refinements have been introduced which better exploit the unique signals anti the unprecedented
observing strength GPS provides.

2. Principles of Orbit Determination

instantaneous point positioning with GPS pseudorange is about as accurate in low orbit as on the
ground: typically 50-100 m for the SPS user (under nominal levels of selective availability) and
10-20 m for the PPS user. instantaneous velocity solutions derived from carrier phase rate may
be accurate to 0.5 m/scc for the SPS user and better than 0.1 m/sec for the PPS user. While such
solutions are adequate for many purposes, they have limitations. An instantaneous solution is
impossible during data outages or periods of restricted visibility, for example, and its accuracy may
be inadequate for orbit prediction or for some real time needs. Some scientific instruments require
real time position knowledge of meters to tens of meters for accurate pointing, while after-the-fact
requirements can be far more stringent. To reduce the instantaneous position and velocity error,
the traditional tools of dynamic orbit estimation can be brought to bear.

a) D ynamic Orbit Determination

Classical dynamic orbit determination exploits orbital mechanics—the physics underlying orbital
motion- and filtering theory to yicld a well-cictcrmincci solution from generally sparse and noisy
measurements. This approach has in fact been necessary with conventional tracking systems,
which, unlike GPS, seldom if ever provide sufficient information at one time for a geometric
solution, and can provide no measurements at all over much of the globe. (An exception is the usc
of range and angle data from asingle site to determine the instantaneous position of geostationary
satellites, though the accuracy of that technique is far worse than with GPS. ) An orbit model must
therefore be introduced to supply the missing information. In dynamic orbit determination the orbit
modelisderived from models of the forces acting on the satellite and the laws of motion,

The process begins with a set of tracking measurements (range, Doppler, or angles, for example)
along with mathematical models of the forces acting on the satellite anti of the satellite physical
properties. The major forces include gravity, aerodynamic drag anti lift, solar radiation pressure,
satellite thermal radiation, and active thrusting. I.esser contributions may come from leaks and
outgassing, sunlight reflected from the earth, anti electromagnetic effects. The force and satellite
modecls arc then used to compute a model of satellite acceleration over time, from which, by double
integration, a nominal trajectory isformed, In principle, all that’s then needed to produce the orbit
solution is to determine the two vector constants of integration- —position and velocity at some time
point- aso known as the epoch state. That is done through an estimation procedure which finds
the epoch state for which the resulting model trgjectory best fits the tracking data, according to
some opt imalit y criterion---usually minimizing the mean square fitting error. ‘1’0 improve the fit,
one can simultaneously estimate various other modcl parameters, such as drag, solar radiation, or
gravity model coefficients, or empirical parameters, such as nonspecific once- and twice-per-orbit
accelerations. The resulting solution, however, is still atrajectory derived from force models, and




its accuracy depends on how faithfully those models, fixed or adjusted, describe the real forces
acting on the satellite.

More formally, to construct a nomina or a priori satellite trgjectory we begin with Newton’'s
second law of motion

f=ma=mr (1)
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where r isthe satellite position vector. This fundamental equation of mechanics provides the
dynamical constraint governing the orbit solution. The true accelerat ion rat any instant depends on
the satellite position and velocity at that instant, and on many other parameters that characterize the
forces at work. In the orbit solution, those parameters may take the form of spherical harmonic
gravity cocfficients, drag and lift coefficients, solar flux and reflectivity, a geomagnetic index, and
soon. I.et (r,, i,) be the true satellite epoch state to be estimated. We first select a nominal epoch
state (1, roll), perhaps from an instantaneous GPS state solution, and construct an acceleration
model ,(t) from the force and satellite models. The nominal trajectory m(t) is then generated by
double integrat ion of the accelerat ion model,

m(t) = JJ-m(t) dt -t r,, t+r,, (3)

The least squares solution procedure will then estimate corrections to the nominal epoch state (and,
if dc.sired, to selected force model parameters) that bring the mode] trajectory into better agreement
with the tracking data. If only the six-clement epoch state and a few other parameters arc adjusted,
as is commonly the case, then in principle only arelatively few measurements around the orbit arc
needed to yield a well-dctcrminced solution, and a sparse tracking network will suffice. Thisisthe
great power and appeal of dynamic orbit determination. Since the first days of space exploration
this techn iquc has made practical the accurate tracking of Earth satellites and deep space probes.

Observe, however, that the resulting orbit solution depends intimately on the (possibly adjusted)
acceleration model r,)(t). Where high accuracy orbits are required, high accuracy models must be
found. This can be enormously costly and may be a practical impossibility in the case of low
altitude and maneuvering vehicles. In the mid-I 980s it was recognized that the continuous 3-1>
coverage provided by GPS offers an escape from this dynamical bind. Before describing the orbit
estimation techniques, wc first review some principles of optima] estimation theory.

b) The Batch Least Squares Solution

A time-honored technique for estimating satellite orbits is the method of least squares, first
employed by Gauss in 1795. Letz be a vector of tracking measurements (z.,...,z,)7 made over
an interval of time, often called a tracking arc, The objective is to find the one trgjectory among all
possible trajectories satisfying the dynamical constraint (FEq. 2) which minimizes the mean square




difference between the actual observations z;and theoretical observations z; derived from the
solution trajectory. That is, wc want to find the trgjectory r(t) that minimizes the functional

V= D - 5 ) @
i= 1

Asthisis a nonlinear problem, wc reformulate it as one of computing a linear correction to the
nominal trajectory m(t) given by Eq.3.First we compute theoretical observations z; from the
nominal trgjectory, then form the differences 6z;=7; - 7;. These prefit residuals become the
observations to be used in a linear adjustment of the nominal trajectory. (Strictly speaking, thisis
still not a linear problem; but if the nominal trgjectory is sufficiently closcto thetrue trgjectory, it
will be in the “linear regime, ” where a linear correction is adequate, if not perfect. If greater
accuracy is needed, alinear correction to the new solution can be computed, and so on, until the
solution converges. ) The familiar linear equation can be written

0z = AX + n 5

where x is the vector of parameters to be estimated, n isthe vector of random measurement noise
on the observations 6z, and A is amatrix of partial derivatives of the observations with respect to
the elements of x. Here x includes at a minimum the adjustments to the six epoch state parameters,
and may include adjustments to various dynamic and geometric model parameters as well.
Equation 5 is called the regression equation and A is the matrix of regression coefficients.

A detailed discussion of the construction of A is beyond the scope of this chapter, but a simple
overview isin order. An clement a,of A isgiven by

aij = 'aT (6)

where, for simplicity, z, now represents the differential clement &z;. This partial derivative relates
an observation z; at one time point to state parameter x; at a possibly remote reference time. The A
matrix thus contains the state transition information from the reference epoch to all times in the data
arc and must therefore embody the dynamical constraint of Eq. 2. To compute the g, wc first write
I 9 Iy (7)
OX; dX¢; OX;
where x_; represents the satellite state at the time of observation z;. This explicitly introduces the
current state x; and its relation to both the current observation z; and the epoch (and other) state
variables x;. The partial dz;/dx; contains no dynamical information and can be computed directly.
The partial dx/dx; relates the satellite state at the observation time to the epoch state and thus
embodies the dynamical constraint. To determine that partial we differentiate the equation of
motion (3) with respect to the epoch state parameters, producing a set of linear second order
differential equations in dx_i/dx;. These variational equations arc then integrated numericaly to
obtain the partial derivative, and thus the final regression coefficients.
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The well-known least squares solution corresponding to the regression equation (5) is given by

g= (AR AYIATR Y, 8)
Where R, = k[ n n'] (9)

is the covariance matrix associated with the measurement noise vector n. This is known as the
batch least squares solution since it requires that al observations over a data arc be collected
together and processed as a batch, In practice, when many parameters arc estimated tq. 8 will
require large matrix inversions, which can give rise to serious numerical problems, Most orbit
determination filters today therefore employ more stable techniques that we shall deal with shortly.

¢) Kalman Filter Formulation

A spaceborne GPS applicat ion may require acent inures real t i me state solution more accurate than
point positioning can provide. Although filtering is needed to achieve this, a batch solution is
gencrally inappropriate since it may require a long accumulation of measurements ant] a large
amount of computation at once. In such cases a sequential estimator is called for, the most popular
example of which is the Kalman filter.

A sequential filter continually updates the current state estimate with each new measurement. The
computation needed for each update is small compared with that for a full batch solution (although
for a properly formulated filter the computation required for many hours of updates is comparable
to that for the same size batch solution); hence an onboard processor can maintain the solution in
real time. It should be noted that the sequential current state estimate employs only data from the
past up to the present, while a batch filter may estimate a state with data from both before and after
an cpoch. In non-real time uses the final sequential state estimate can be mapped to all times in the
data arc, just as in a batch solution, to achieve an equivalent result.

The conventional Kalman filter is formulated in discrete time recursion relations. Suppose the filter
has produced a state estimate X;, at time t (using dataupto and including time t), and that the
estimated covariance matrix for ;is pi. The state solution X, at time,isderived in two steps:
1) the time update, in which a predicted or a priori solution X;, ; and covariance matrix P;, arc
generated from their values at time t, with no new data yet included, and 2) the measurement
update,in which the new estimates %,,, and P,,, are generated from the data at time t;, ,, as
corrections to the predicted values.

i+l
The time update proceeds as follows:
ii-l] = q)i ii (10)

anti Py = @ P @} (11)




where @; is the transition matrix, derived from the equation of motion, relating the state at t to the
state at t,,. The measurement update is then

Xipp = Xy + Gy (2 - Ay, xig)) (12)

~ -~

and Py = Py - Gy Aiy r)Hl (13)

where z; IS the measurement vector at time t, A, is the matrix of measurement partials with respect
to x;, and G; is the so-called Kalman gain, given by

G, = P, AT (AP A + R, (14)

where R ; isthe error covariance of the measurement vector z;. (In some applications, for example
where onboard computing may be limited, asubopt i mal fixed gainfilter can be employed, in which
G ispredetermined.) Note from (14) that, like the batch formulation, the conventional current state
Kalman filter formulation involves matrix inversion, which can leadto numerical instability.
Various aternative approaches have been devised (e.g., Bierman, 1977 and Thornton, 1976)
which employ pseudoepoch state factorized formulations. These avoid matrix inversion by
factoring Pinto either upper triangular and diagonal matrices (U-I formulation) or its square-root
matrices (sguare-root information filter or SRIF formulation). Factorized filters have been
incorporated into several of NASA’s high performance orbit dctermination systems. For more on

these techniques see Lichten (1990) and the references therein.

Comparison of the batch and sequential formulations reveals that the latter is simply a recursive
equivalent of the former. For a given data arc, the final sequential and batch solutions, when
mapped to the same epoch with the final dynamical models, will be identical. As presented here,
both arc dynamical formulations which depend fundamentally on physical force models to produce
the solution trgjectory. It is worthwhile at this point to examine the principal errorsthat arisein the
dynamic state solutions.

d) Dynam ic Orbit Error

Yor simplicity, let us consider only the PPS user and only position error. The typical accuracy of
instantancous point positioning with pseudorange is] 0-20 m, with the major errors resulting from
GPS orbit and clock error, and pscudorange measurement error. Filtered solutions reduce these
errors in three ways. First, random measurement error is smoothed against the dynamic model
over the full fitting arc, with the resulting position error decreasing inversely as the square-root of
time. Meter-level independent random errors can, after afew hours, be reduced to centimeters. At
the same time, many systematic errors—GPS orbits and clocks, multipath-—will be at least partly
inconsistent with (orthogonal to) the user satellite dynamic models, and will be attenuated in the
solution. (Krrors that correlate strongly with orbital dynamics, such as once-per-orbit ionospheric
effects, may remain at full force.) Finally, dynamic information is introduced which supplements
(and may dominate.) the geometric information in the point position solution.Dynamic orbit
accuracies of afew meters might therefore be achieved. A number of groups now distribute GPS




orbit and clock solutions that are accurate to better than 1 m. When those rather than broadcast
data arc used, thefiltered user state error can fall below 1 m.

This error reduction does not come for free: As the dynamic filter smooths measurement error, it
introduces dynamic mode] error. Since force models arc imperfect, the integrated model trgjectory
will be imperfect as well. Force model adjustments made as part of the solution may offer little
improvement. And since the dynamic solution yields a trajectory derived from the final force
models, residual errors in those models become errors in the solution trgjectory. Gravity and drag
model crrors are often dominant, and both increase rapidly as the satellite altitude is reduced. Thus
accurate dynamic orbit determination becomes problematical at low altitudes. To take some
examples, the motion of Lageos, a dense, inert sphere at about 6000 km altitude, can be modeled
to within afew centimeters over periods of weeks; the motion of Topcx/Poseidon, a much larger
vehicle at 1336 km, to about 10 cm over 10 days; the motion of SEASAT, at 800 km, to one or
two mete.rs over one day; andthe motion of the Shuttle, at 300-400 km, to no better than tens of
meters over an orbit. At low altitudes, therefore, dynamic filtering may offer little. or no advantage
over simple point positioning,

Dynamic model errors often reveal themselves as signatures in the post-fit residuals; that is, they
create systematic discrepancies between the actual measurements, which reflect the true trajectory,
and theoretical measurements derived from the solution trajectory. We can imagine an extreme
case in which a force varies randomly from one time step to the next and is therefore inherently
unpredictable, but can be observed in the residuals. At some level, a number of forces (e.g., drag,
gravity anomalies) can appear to behave that way. What is needed, then, is a means of exploiting
information in the residuals to correct the orbit solution. The Kalman filter provides such a means
in the form of process noise modeling.

¢) Kalman Filter with Process Noise

Augmenting a Kalman filter with a process noise model is a way of telling the filter that the
information in @ and A describing the behavior of the state is incomplete—-that there is a
component of that behavior for which the filter has no model, which it cannot predict, but which it
may bc able to observe in the data. This unknown behavior is modeled in the filter as a stochastic
process (though in reality it maybe deterministic). The filter then triesto detect that behavior in the
measurcments and track it at each time step.

in the context of orbit determination this means that at each time step, in addition to applying the
standard dynamic updates, the filter will examine the discrepancy between the dynamic state
estimate and the apparent state as indicated by the measurements. From that discrepancy it will
estimate. alocal correction to the dynamic model, valid oniy over the update interval (t,_;, t). When
added to the dynamic model, that correction will red uce the disagreement between the observations
and the sol ution trajectory at time t. As it proceeds through the data, the. filter will generate a
sequence of Jocal force model corrections, one at each update, time, bringing the solution trajectory
into better agrecement with the observations. That may be good or bad, depending on the quality of
the observations and the accuracy of the models. We will therefore want to take care to hinder the
local corrections from chasing after bad measurements.




"The process noise model can take many forms, and various constraints may be applied to limit the
freedom of each new correction to depart from the dynamic model or from the previous correction.
in practice, the stochastic correction is often introduced by augmenting the state vector x; with a
parameter Vector pi representing the local force model adjustment to be estimated attimet;. For
this discussion we will let p;=(p;;, P., Pi3)! denote a 3-D force which is constant over the interval
(4.1, and zero elsewhere. This force will be estimated to account for any discrepancy between
the dynamic solution update and the observations at time t,, and this will be repeated at all time
steps. The augmented state vector X thus has three additional elements

X = l"‘]_ (15)

I_p

An effective realization of the process noise sequential filter used extensively by NASA in orbit
cstimation is given below (Bierman, 1977; Wu et a., 1986),

Time Update:

XH] = q)iXi (16)
and Piyy = &P o) + BQ;B' (17)

where now wc have

[q)x(m i) @, (i ] ,i)J
d)i = (18)
0 M,
0
B = 1. (19)

@, isthe dynamic transition matrix of Eq. 10; ®,,(i+1,i) is the transition matrix relating %;, to the
process noise parameters p;; M, is a3x3 diagonal matrix with the jth element

m=exp [~y ) / gl (20)

Qisa diagona covariance matrix associated with a white noise process, with the jth element

q = (- mjz) ojz (21)

and I, isa3x3 identity matrix. The measurement update equations arc identical to ( 12)-(14),
except that now wc use the augmented state vector’ X and its associated covariance matrix P.




This isafirst-order Gauss-Markov process noise model. Note that M; is the transition matrix for
the process noise parameters, and that the transition is in the form of a decaying exponential
correlation. ‘I’ he time constant t; in (20) can be chosen to reflect the correlation in the dynamic
modeling error (and thus in the desired correction) over one update interval. If T;is much smaller
than the update interval, then m; is small; the model error istherefore regarded asuncorrelated from
batch to batch, and this becomes a white noise error model. ~'here is onc other selectable
parameter, the steady state variance o7. Through Fq. 21, o7 scales the batch-to-batch variance q;,
which further constrains the correction. In the case of a white noise model, this constrains each
independent correction with respect to the dynamic model, with no dependence on the previous
correction, If 6;=0, the local force correction is constrained to zero and the conventional dynamic
solution is obtained. in summary, the real constraint is determined by 1; (through m;) and ol as
they combine through (21 ) to form the weighting matrix elements q;.

Stochastic force models introduce an additional complication for non-real time applications in
which an optimal solution over an entire data arc is desired. It is no longer sufficient simply to
map the final state solution to other times by means of the final dynamical models. The local force
corrections have been determined with data only up to the times they occur, and thus have not
benefitted from later measurements. To compl ete the estimates of the local forcesiit is necessary to
filter the data in the reverse direction as well, a process called smoothing, before mapping to all
time points. The combined estimator is known as a filter/sn~oothcr.

With conventiona (sparse) tracking data one must be careful when employing process noise mode]
corrections. The dataacquired at any one time are often weak (or nonexistent), and insufficient by
themselves to determine position. A relaxed constraint on the process noise estimate may result in
alarge and crroncous adj ustment to the state, or may cause the solution to fail. Care must be taken
to constrain the corrections within the observability limits of the data. This has traditionally meant
relatively long correlation times and tight batch-to-batch sigmas.

3. Orbit Estimation with GPS

We arc now in a position to examine the powerful advantages GPS brings to estimating satellite
orbits. First we'll look at a purely geometric technique that can improve dramatically upon point
positioning accuracy, without any dynamic filtering, by combining the continuous carrier phase
and pscudorange observable.

a) Carrier-Pseudorange Precise Posit ioning

When pscudorange and continuous carrier phase arc brought together, the basic method of
geometric point positioning can be refined to track the position of an arbitrarily moving vehicle
with high accuracy. The technique is analogous to estimating a carrier phase bias by averaging the
difference between continuous phase and pseudorange. This converts biased phase to a precise
pscudorange with a small residual bias, preserving the detailed information on range change in
carrier phase. More generally, we can construct a biased record of 3-D position change from
niLIlti-satellite carrier phase, then estimate the 3-13 position bias by averaging the point-by-point
vector difference between that record and corresponding point position solutions.




The concept is illustrated in Figs.1 aC. A sequence of N independent point position solutions X,
is shown in Figla. The true receiver motion is represented by the dashed line. If xy isthe true
position at time t,, wc can write

i}k = Xk +4 llk (22)
where, for simplicity, wc assume n, is a white noise process with diagonal covariance elements
oﬁj,j: 1,2,3. Figure Ib shows the record of position change obtained by tracking carrier phase
over the same arc. This is a precise representation of the true path, but with an arbitrary offset in

position. It can be regarded as a series of position estimates, X, having a small random error and
an arbitrary common bias:

i"k:xk+b+ek (23)

where b isthe bias vector and e, is a white noise vector having | diagonal covariance elements OCJ
We estimate the bias b by averaging the difference between the Xk and Xy

N
N l ) -
= "ﬁz Xk -= xk (24)
N
0L 4 z ¢, — Iy (25)

Since o; is typically 100 times smaller than 6, the approximate component error on the bias
estimate is

0,

Q
o
m

(26)

2
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Thus meter-]cvc] random noise on 1-scc pseudorange data can give a decimeter-level bias estimate
within 2 rein, and a centimeter-level estimate within afew hours. (We ignore GPS ephemeris and
clock error, which are treated in later sections. ) Subtracting Eq. 25 from Eq.23 eliminates the
position bias in the phase solution to give a precise record of absolute position. As shown in
Fig.1c, the final path solution sits close to, and has nearly the exact shape of, the true path. The
final positions will have an approximate component efror

2 2,172 27
o, =(o; + op) (27)

where o}, represents the residual bias common to all points and o, is the point-to-point random
error. The solution path therefore has the precision and time resolution of a pure carrier solution,
with an absolute bias that is a fraction of the point position error.
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This technique is well suited to real time recursive execution. Consider a receiver that produces an
instantancous point position ¥, at time t,, and position change A%, obtained from carrier phase
tracked from t,_; to t,. An unbiased estimate X, , , of the position at timet,, iS given by:

R N . |
X :—n—(X+Ax ) + —x

n+1 n+1 n n+l n+1 " n4l (28)

This is a variation on the recursive formula for a si mplc average:

n .. |-
+ mlml (29)

The position change information, A%, ;, maps the current position estimate X, forward to the next
time point for averaging with the point position ¥,,,, computed at that time, Carrier phase, in
effect, inertially aids the sequential averaging of point position solutions to refine the phase bias
estimate. The procedure can be tuned by weighting each X, by itsinverse covariance.

A principal virtue of this technique is its extreme simplicity. A filter to precisely track unpre-
dictable motion (or the relative positions of multiple vehicles) can be realized in a few lines of code.
One drawback isits exclusion of external information about platform dynamics, making the solu-
tion vulnerable to outages which might easily be bridged with dynamic models. This is remedied
in a more robust technique that employs the Kalman filter formalism.

b) Kinematic Orbit Determination

When a Kalman filter is applied to GPS data from alow orbiter, the full advantage of continuous
3-D coverage may not be realized without an aggressive use of process noise corrections. 1f wc
assume a full GPS constellation, a flight receiver having six or eight parallel channels, and a
relatively wide field of view, strong instantaneous observing geometry is assured. Inclusion of
continuous carrier phase data vastly increases the potential precision of the estimates. It then
becomes possible to relax or eliminate constraints on the process noise force corrections and track
the true motion of the vehicle with great precision.

The concept isillustrated in Fig. 2. The dashed curve represents the irregular path of alow orbiter
subject to varying forces. With GPS data collected by the orbiter, wc can execute a traditional
dynamic orbit solution to produce the smooth orbit estimate shown by the solid line. Thisleaves a
set of (possibly large) post-fit residuals. Because GPS provides continuous 3-D coverage, the
post-fit residuals at each time point suffice to reconstruct the observed satellite position (its
departure from the dynamic solution) by purely geometric means. The observed trajectory can then
be constructed by adding the geometrically determined correction to the dynamic solution at each
time point, Force model error, reflected in the initial post-fit residuals, is thereby eliminated.

‘I"his can be thought of as two distinct steps: First, a conventional dynamic solution produces a
reference trajectory and post-fit residuals; the residua path is then constructed geometrically, point
by point, and added to the dynamic solution, in practice this can be done in one estimation step in
aKalmanfilter with process noise. The estimated process noise parameters p in Eq. 15 can
provide the geometric corrections to the dynamic solution. In ordinary tracking applications those
parameters would be tightly constrained and geometric information only weakly expressed. But
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the full observability o ffered by GPS allows all constraintto be removed. The correlation time «;
can be set to zero (white noise model) and the steady state variance O’iz to alarge value. Thefilter
will then estimate a 3-D> force correction for each interval (and a corresponding change in the
current state) to exactly account for the geometric discrepancy between the measurements and the
dynamic solution. ‘]"hisis called non-dynamic or kinematic orbit determination, though both terms
arc somewhat misleading since the technique builds on an underlying dynamic formulation.

Aswec shall sce in more detail later, the kinematic solution can be carried out with pseudorange data
alone, with carrier phase data alone, or with the two in combination, Observe, however, that as
the dynamic constraint is relaxed to alow the geometric correction, the effect of measurement error
increases. Instead of being smoothed against the dynamic model, single-point measurement error
isfully expressed in the geometric correction. Thus when pseudorange aoneis used, the solution
becomes a series of point positions with full pseudorange noise. For precise applications
continuous carrier phase is therefore essential. Although this resembles the purely geometric
technique of carrier-psel)ctorangc positioning, the Kalman filter formulation, with its dynamic core,
is inherently stronger and permits a highly accurate kinematic solution with carrier data alone.

¢) Reduced Dynamic Orbit Determination

Because the kinematic correction is geometric, it is vulnerable to weak geometry. Momentary data
outages or large PDOPs will cause the error to grow or the solution to fail. It may be noted,
moreover, that the kinematic so] ution makes little use of dynamic information--it is an empirics)
result constructed from the measurements. Often, however, useful dynamic information is at hand
which, properly combined with geometric information, can improve the result. When geometry
weakens or fails, dynamic information can then carry the solution with high accuracy.

We can achieve a balance of dynamic and geometric information in the orbit solution by imposing a
judicious constraint on the process noise parameters. In an optimal solution (under the assumption
of aGauss-Markov process noise model) the time constant t; will reflect the actual correlation time
of dynamic model errors, and the steady state variance (5,-2 the actual error in the dynamic model.
The gecometric corrections will not be free to follow the measurements wherever they lead, but will
be bound by the constraint to the dynamic model. Relative weight will in fact shift back and forth
between dynamic and geometric information as observing strength varies. When geometry is
weak, the process noise constraint will hold the correction close to the dynamic solution; if there
arc no observations at all, no correction can be computed and the dynamic solution is prod uced.
This opt i mized technique is known as reduced dynamic orbit determinat ion.

Another interpretation is given in Fig. 3, which illustrates the relative significance of random and
systematic error in the solution trgjectory. In the dynamic solution, random error is minimized
(since the fewest parameters arc adjusted) while dynamic error is fully expressed. This is reversed
in the kinematic solution as many parameters are adjusted, amplifying the effect of data noise while
absorbing dynamic error. The reduced dynamic solution seeks the optimal balance to minimize
overall error. We note, however, that mini mum error is not always the first objective. For some
science applications it may be desirable to convert systematic error to random error (kinematic
solution) or vice versa (dynamic solution), even if the total error is not minimized.
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This raises the question of how one chooses the process noise weighting. Often there is some
prior knowl edge of the quality of the force models in usc and the consequent position error
expected. Computer simulations or covariance analysis can then suggest areasonable a priori
weighting. When real databecome available, a variety of strategies for tuning the reduced dynamic
constraints become possible. One approach is simply to observe the magnitude of the process
noise corrections. If they are near or exceed the constraints, the constraints should be relaxed; if
they fall well short, the constraints can be tightened. Another technique is to compare contiguous
orbit solutions at common end points (or on short overlapping segments) and then tune the
constrains to maximize the agreement.

The reduced dynamic technique is one realization of the concept depicted in Fig. 2; many others are
possible, For example, we might directly compute position rather than force corrections. An
approach along those lines proposed by Wu (1992) has certain advantages (and is currentl y being
exploited) for gravity recovery. Force corrections, however, directly augment the dynamic model
and have the virtue that, athough discontinuous (piccewise constant) themselves, they yield a
continuous trajectory when integrated.

d) Orbit Improvement by Physical Model Adjustment

The reduced dynamic solution introduces local force model corrections to reduce the effects of
dynamic model error. often it is more efficient to reduce that error by adjusting physical model
parameters; fewer adjustments may be needed and data strength preserved. Adjustment of drag
coefficients and radiation pressure terms (for both received solar radiation and emitted thermal
radiation), for example, is common. Particularly attractive with GPS tracking data is gravity
fining, or adjustment of gravity field coefficients. The geopotential is commonly represented as a
spherical harmonic expansion containing anywhere from a few terms to a few thousandterms,
depending on the fidelity required, In contrast to process noise parameters, which are local, each
gravity harmonic is a global funct ion representing a permanent component of the geopotential.

Many global gravity models have been derived from historical satellite tracking data, which is often
sparse in some regions. GPS, however, leaves no coverage gaps. Since a polar orbiter overflies
the entire globe, GPS tracking of such a satellite can enable permanent improvement of the global
gravity model. That improvement will in turn reduce the dynamic error and permit tighter
constraints on the process noise models in subsequent orbit solutions. Gravity tuning has elements
in common with reduced dynamic orbit estimation: Both techniques adjust alarge number of force
parameters to bring the solution trajectory into closer agreement with the data, Where gravity is the
dominant model error, gravity tuning is a desirable first step, since it yields a permanent model
improvement.

4. Direct Orbit Determination with GPS

Sophisticated estimation strategies may be of little value in direct GPS-based orbit determination,
where only the onboard GPS observables and broadcast data are used in the orbit solution.
Although measurement noise can be reduced to centimeters by filtering, final user orbit error will
bc dominated by GPS ephemeris and clock error (with possibly large contributions from the
ionosphere and selective availability for the SPS user) at alevel of meters to tens of meters. While
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dynamic filtering can mitigate those errors, evaluating the expected accuracy of the resulting
solution is not straightforward.

Consider the batch least squares dynamic solution of Eqs. 8-9. It is easily shown that the error
covariance P, on the estimate X is given by

P = (AR A (30)

This is the formal error due to the random measurement noise vector n (Eq. 5), sometimes called
the commission error, It does not take into account other errors present in the solution, such as
those due to GPS orbit and clock errors, sometimes called omission errors. To examine the effect
of such errors we can include the relevant parameters and their relation to the observations
explicitly in the regression equation (5) by writing

0z = AXx + By + n (31)

wherey is the vector of omission error parameters and B is a matrix of partial derivatives of the
observations 6z with respect to y. When the solution given by (8) is applied to (31) we have

x=x+ (A" R'A)TATR "By + i (32)

wherei is the transformed random measurement noise. “I’ he long coefficient in front of y in (32)
describes the response of the estimate X to the error parameters y, and is called the sensitivity
matrix, S, where

ATl Ay AT e
s=AR'A'ATR'B (33)
The total error covariance, Py, Of the estimated vector X is given by

Pt =P +S Py, ST (34)

om
where P, the apriori covariancc matrix for the omission errors, must be derived through careful
analysis of those errors,

Since many omission errors arc physically unrelated and can be regarded as uncorrelated, P, can
often be (and almost invariably is) set up as a diagonal matrix. The errors on the elements of a
dynamic satellite state solution, however, are strongly correlated, (Note, for example, that thereis
adirect relationship between satellite altitude and in-track velocity; in a dynamic solution, an error
in one will appear as a compensating error in the other. ) A diagonal covariance matrix istherefore
inadequate to assess the effect of GPS ephemeris error on a dynamic user orbit solution, and in fact
can be shown to give a highly pessimistic estimate of the error that actually arises. To evaluate the
effect of GPS orbit error on a dynamic user solution, a full covariance matrix is nceded for the
GPS state parameters. One way to obtain such amatrix isto simulate the GPS orbit determination
process asit is carried out with ground data to produce the GPS orbits available to the user.
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Such astudy was done by Bertiger and Yunck ( 1990), The results showed that errors in the GPS
orbits were attenuated by roughly a factor of two in the dynamic solution for alow orbiter at
1300 km altitude. That is, GPS orbit errors of 1 m resulted in errors of about 0.5 min the user
orbit. (When a diagonal GPS covariance matrix was used, this error was overestimated by a factor
of about twenty. ) Because the satellite under study was at the relatively high altitude of 1300 km,
model error was at the decimeter level and the full benefit of dynamic smoothing could be gained.
With atypical GPS broadcast ephemeris error of 5 m, wc could expect to achieve a dynamic real
time solution for such a satellite accurate to 2-3 m, limited by the GPS orbit error.

At lower altitudes, dynamic modeling error grows. At 500 or 600 km dynamic error may roughly
cqual GPS ephemeris error. Below 500 km, user dynamic error may dominate, and the optimal
filter will therefore deweight dynamics. For the Space Shuttle at 300 km, the optimal weighting
will be almost purely kinematic; the Shuttle position error will therefore be essentially the range
error (dominated by GPS orbit error) times the PDOP. Because GPS orbit errors change slowly,
the direct kinematic error will be highly correlated from one second to the next.

The most accurate direct orbit solutions are therefore obtained by dynamic filtering for satellites
above about 800 km (and below 3000 km), with the accuracy 1imited by GPS orbit error. The best
GPS orbits produced today (available typically several days after the fact) are accurate to better than
Im. in principle, such accuracies can be achieved nearly in real time. Moreover, accuracies of 1-
2 m can be reached for GPS orbits and clocks predicted several hours into the future (1 .ichten and
Bertiger, 1989), and thus available for true real time use. If dynamic filtering reduces the resulting
user error by afactor of two above 800 km, real time dynamic tracking could be made accurate to
about 1m. At the lowest altitudes, where the kinematic solution is optimum, accuracy under these
conditions would reach a few meters. For further improvement at all altitudes we must introduce a
means of reducing GPS orbit error.

5. Precise Orbit Determination with GPS

A few classes of mission require orbit accuracies ranging from 1 m (land altimetry, precise
imaging) down to a fcw centimeters (ocean altimetry, gravity field modeling). For that level of
performance we turn to the techniques of differential GPS. As it has been developed for scientific
precise orbit determination, differential GPS is intended for non-real time applications and differs
considerably from the real time differential techniquesused for regional navigation.

a) Global Differential Tracking

The fundamental concept is illustrated in Fig. 4. In addition to the flight receiver, a network of
reference receivers around the world continuously tracks all GPS satellites in view. It is essential
that the flight receiver and at least one groundreceiver share common visibility of several GPS
satellites at all times. If they are well distributed, only about six ground sites arc needed to ensure
this, though in recent experiments with Topex/Poseidon adozen or more have been used. Several
ground receivers maybe at fiducial Sites—sites with accurately known absolute positions that will
be held fixed during the solution. The best current ground site positions (for example, those of the
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International Terrestrial Reference Frame maintained by the International Earth Rotation Service in
Paris) are known relatively to 1-2 cm, and absolutely (with respect to the geocenter) to about 3 cm.

Pscudorange and carrier phase data from the flight and ground receivers are processed together to
produce a single grand solution. The solution strategy can vary greatly in detail, but typically
includes estimation of all GPS satellite orbits; the user orbit; transmitter and receiver clock offsets,
all carrier phase biases; non-fiducial ground site positions; atmospheric delays at ground sites; and
atmospheric drag, solar radiation pressure, and other satellite force parameters. Data arc lengths
may range from a few hours to many days. Because only the fiducial sites are held fixed in the
solution, they establish the reference frame in which al other positions are determined.

Onc variation permits a/l ground sites to be adjusted within a moderate constraint, typically 10-
1000 m on each site. This severs the tic to a predetermined reference frame and allows the entire
solution to rotate within the limits of the overall constraint. The solution is then mapped into a
chosen reference frame (such asITRFE) through a seven-parameter transformation (translation,
rotation, and scale) which minimizes the 3-D RMS difference between al ground site solutions and
their values in the chosen frame. This removes dependence on a particular subset of sites to define
the reference frame and reduces reference station error in the total error budget. A less powerful
variation processes the ground and user data separately. The ground data first determine accurate
GPS orbits and clock offsets, which are then applied in a direct user solution. This dots not
exploit the parameter correlations that arise in the true simultaneous solution, and hence dots not
achicve the same degree of error reduction, but may offer greater flexibility and convenience.

While global differential tracking constitutes amajor logistical departure from direct tracking, the
basic filter equations needed to carry it out (Eqs. 16-21) remain unchanged. What changes is the
definition of the estimated state vector X. To the user state and other adjusted parameters we now
append state elements for all GPS satellites, clock offsets for all transmitters and receivers, ground
site positions, atmospheric delays, and so on. The matrices of measurement partials and a priori
covariance are correspondingly augmented, and the solution becomes more computationally
demanding. Itisworth examining in more detail how some of the key parameters are treated.

b) Fine Points of the Global Solution

When carrier phase data are used in a grand solution, either alone or together with pseudorange,
the effective data noise (random measurement error) istypically below 1 cm. This can be seenin
the post-fit residuals of global geodetic solutions, which for the combined dual frequency phase
observable arc typically 3-6 mm. As revealed in numerous covariance studies (Eq. 24), random
measurement error will contribute on the order of 2-3 cm (o the user position error-- somewhat
higher for purely kinematic solutions and lower for purely dynamic solutions. In the grand
solution, the major systematic mode] errors that plague the direct solution (GPS orbits and clocks)
arc reduced, Note, however, that if GPS satellite dynamics and clocks are poorly modeled, the
G1'S orbit and clock estimates will degrade and systematic errors will still arisein the user state
solution. Fortunately, the high-altitude GPS satellite dynamics can be well modeled over 24 hrs,
and standard dynamic GPS solutions generaly suffice. For longer arcs, a weak stochastic
adjustment of the GPS solar pressure parameter may be required.
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For clock solutions we have several options. If high quality atomic clocks are used in all receivers
and transmitters, ssimple quadratic models might suffice over many hours. Because, real clock
behavior can be unpredictable, common practice is to allow for the worst by solving for al clock
offsets independently at each time step under a loose constraint. ‘I"hisisequivalent to modeling
clock behavior as a white noise process with large variance, in analogy with our treatment of the
process noise state parameters in the kinematic orbit solution, It is aso similar 1o the popular
practice of double differencing to eliminate clock parameters, however, when global data sets are
used, as they must bc for precise orbit determination, the white noise clock model is more
powerful, as it retains more data (Wu, 1984). Just as purely kinematic orbit determination fails to
exploit known dynamics of the satellite, white noise clock models fail to exploit known (and
perhaps very smooth) clock behavior, and thus must be regarded as a conservative strategy.

Computer Simulations, covariance studies, and results with Topcex/Poseidon have shown that the
grand solution strategy can reduce user satellite position errors due to GPS orbit and clock errorsto
afcw centimeters. What then becomes the dominant error in the user solution? one candidate is
the error in modeling atmospheric propagation delay at the ground sites--—or, rather, the variable,
wet component of that delay. When standard seasonal models (supported by surface weather data)
arc used to calibrate the atmospheric delay, the error is typicaly 3-5 cm at zenith, which may
tranglate into 2-10 cm of user state error, depending on the solution technique. This can be
reduced by periodically solving for a zenith delay at each site. The most powerful strategy yet
developed is to model the zenith delay as a stochastic process (a random walk, for example) and
adjust it at each time step under a constraint derived from the observed power spectrum of
atmospheric delay variation, Typical zenith delay acc uracies with thistechnique are about 1em.

Finally, wc note that each carrier phase observable contains an arbitrary bias corresponding to
integer cycle ambiguities at each frequency. Those biases must bc estimated (or eliminated by time
differencing) whenever the phase observable is used, In precise ground-based geodesy, an effort
is often made to determine the exact integer cycle ambiguities in the differential observables and
then fix the biases at those values. Reselving ambiguitics between an orbiter and ground sitesis
demanding and, when many hours of data are used, can be shown to contribute little to solution
strength, since at that point data noise is not a dominant error. The differential strategies described
here attempt no cycle ambiguity resolution, and instead treat each bias as a continuous variable in
the grand solution.

C) Precise Orbit Determination Performance Analysis

It should now be evident that the general strategy for achieving high accuracy with GPSisto
exploit the great strength of GPS data to observe and correct any systematic errors that threaten to
dominate. Just how the data will stand up to this demand depends on many details of system
configuration and solution strategy. To illustrate those dependencies, wc present the results of
computer covariance studies for severs] real or proposed missions. All studiesinclude both
commission and omission errors in an attempt to arrive at realistic fina error estimates.

The first exampleistaken from error studies conducted for Topex/Poseidon years in advance of its

launch in August of 1992. Topex/Poseidon is a U.S.-French ocean altimetry mission flying at an
altitude of 1336 km, where dynamic model errors are now well below 10 cm. The GPS
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con figuration for “ 1’ opcx/Poseidon includes a six-channel (dual frequency) flight receiver with a
hemispherical field of view, and a six-site ground network. The assumptions, error model, and
estimation strategy arc summarized in Table 1. Note that a reference frame error of S ¢m per
component for each of three fiducial sites was assumed, far greater than that crror today.

Figure 5 showsthe predicted RMS altitude error for three solution strategies— dynamic, kinematic,
and optimized red uced dynamic-as a function of the gravity model error, Because the kinematic
solution eliminates dynamic error, it is independent of the gravity model. Its total error is divided
almost equally between data noise and reference site error (which will virtually disappear with the
free network strategy). The dynamic solution error depends strongly on gravity error and becomes
limited by data noise and reference frame errors only when gravity and other dynamic model errors
approach zero. ‘I'he optimized reduced dynamic strategy surpasses both kinematic and dynamic—
the latter even when the gravity error is zero, since other dynamic errors will still be reduced.

Also shown in Fig. 5 are three dots representing actual results from Topex/Poseidon obtained
during the first year of the mission. The dots give the RMS altitude agreement between purely
dynamic solutions made with ground based laser ranging and Doppler data, and the GPS reduced
dynamic solutions. An RM S agreement of about 6 cm was obtained with the final prelaunch grav-
ity model, known as JGM-1, which has a quality roughly in the center of the range shown. This
agreement improved to about 3.5 cm when the JGM-2 model, which had been tuned with laser and
Doppler tracking data, was produced by the Goddard Space Flight Center several months after
launch (Yunck et al, 1993). ‘I’he agreement improved further, to about 2.5 cm, when the JGM-2
model was tuned with the more comprehensive GPS data by investigators at the University of
Texas (Schutz et al, 1993). At this point the RMS altitude error resulting from gravity mismodel-
ing isbelieved to be no more than 2 cm.

Past ocean altimetry missions have been plagued by what arc known as geographically correlated
orbit errors---that is, orbit sol utions that arc consistently biased in different geographic regions,
Such errors can confound the construction of global circulation models from the altimetry data.
Geographically correlated orbit errors are often aconsequence of geographic biases in the gravity
model, although other factors may also play a role. Studies by Rosborough and Mitchell (1990)
showed that kinematic and reduced dynamic orbits, by reducing dependence on force models in
general, can virtualy eliminate any geographic correlation in orbit errors resulting from the gravity
model. That result was dramatically confirmed with |’ opcx/Poseidon, 1,aser/Doppler dynamic
orbit solutions with JGM- 1 showed consistent and pronounced geographic discrepancics from the
GPS reduced dynamic solutions. In later dynamic solutions employing the GPS-tuned gravity
model, geographic discrepancies had al but vanished.

A second example is taken from the Earth Observing System, a suite of scientific Earth probes
planned to fly at about 700 km, beginning in the late 1990’s. Because dynamic errors may grow
large at that altitude, a purely kinematic analysis is presented, This time the reference site error is
reduced (0 3cm per component. Other assumptions that differ from the Topex/Poseidon analysis
arc shown in Table 2. Figure 6 shows the resulting predicted altitude error as a function of data
arc length for several different GPS data combinations. The data type called "carrier-quality range”
is afictitious pseudorange measurement having the precision of carrier phase, and serves to
establish a performance bound.
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Figure 6 indicates that few-centimeter accuracy iS possible for dynamically complex platforms, and
that even the biased carrier phase observable used by itself can approach the performance of the
strongest possible data type, It may scem surprising (hat the kinematic solution can succeed with
carrier phase aone, since Ihc grand solution must estimate phase and clock biases, and those biases
arc nicely constrained by pseudorange data. But the dynamic core of the kinematic sol ution allows
the biases to be reliably estimated, just as they are in any integrated Doppler dynamic solution.
This illustrates a fundamental difference between the process noise Kalman filter formulation and
the simple carrier-pscudorange bias estimation of Sect. 3-a. The latter depends entirely on
pscudorange to provide an absolute phase bias estimate, while the former can recover the bias
dynamical] y (while correcting the model kinematical y) when range information is absent,

A third study explores the limits of kinematic performance with a stringent tracking challenge: the
Space Shuttle at 300 km. For a given phase noise, kinematic tracking accuracy is limited largely
by observing geometry, which wc strengthen by assuming afull sky field of view (each Shuttle is
equipped with GPS antennas top and bottom to permit this), a flight receiver able to track all
satellitesin view (typically 13-15), and eleven ground sites, with reference site error of 1.5 cm pcr
component (about what it is believed to be in 1994). Other assumptions are given in “I’able 3. As
shown in Fig. 7, the limiting error in @] components now approaches 1cm, though in reality
dynamic errors in the GPS satellite orbit solutions may degrade this somewhat. This opens up
new possibilities for near-earth ocean altimetry and other precise Earth observations on platforms
of opportunity, and for short-duration testing of precise instruments on the Space Shuittle.

d) Single-Frequency Precise Orbit Determination

The carrier-only kinematic solution is more than a curiosity. It will allow accurate orbit determina-
tion with simple codeless receivers, bypassing the effects of anti-spoofing, and can be used to
achieve fair orbit accuracy with single-frequency data as well (Y unck, 1992), In the examples thus
far we've assumed dual-frequency elimination of ionospheric delay; but the ionosphere can also be
removed by averaging the 1.1 phase and pscudorange observables. Consider these simplified
expressions for the phase and group delay (pseudorange) observables :

k¢ TEC )
Ty =T - 2 + bias + € (35)
and
N ks TEC
‘Cg,.p =T+ ————f2 + S,grp (36)

where TEC is the total electron content along the raypath, f is the observing frequency, k is a
constant, € is the random measurement error, and t is the common delay due to geometry and other
factors besides the ionosphere. Note that the ionospheric term is identical in both equations but
appears with opposite sign. Forming the simple average of (35) and (36) wc obtain
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:Cq)—fz—‘tg'l)— = T 4 bias' + 5
The ionospheric term is cancelled and the resulting, observable has the form of the biased carrier
phase delay (35). Because &, is much greater than €, the effective measurement error on (37) is
half that of pscudorange. This is sometimes called the GRAPHIC (GRoup Anti PHase |onospheric
calibration) observable. Note that the conventional dual-frequency correction increases raw data
noise by a factor of three; thus if single-frequency phase is 100 times more precise than pseudo-
range, dual-frequency phase will be only 16 times more precise than the GRAPHIC observable.

€+ Egrp @7

Modern receivers that employ 20 MHz C/A-code processing can recover C/A pseudorange with a
precision of better than 50 cm in 1 sec. The GRAPHIC observable reduces this by half. Smoothing
over 60 sec can bring the error below 10 cm. Figure 8 shows the predicted 3-1>) RMS position
error for the Shuttle at 300 km with three solution strategies: dual-frequency dynamic, GRAPHIC
kinematic, and dual-frequency kinematic. Key assumptions are shown in Table 4. Note that drag
and gravity errors make the dynamic solution worse than simple point positioning. The kinematic
solutions improve orbit accuracy by two to three orders of magnitude, reaching about 2 cm per
component with dual-frequency phase. The order-of-magnitude difference between the two
kinematic cases is explained by the higher data noise on the GRAPHIC observable, which was
assumed at all ground sites as well.

Single-fregLIcncy ionospheric calibration was demonstrated for the first time on an earth satellite by
Gold ctal (1993). The Extreme Ultraviolet Explorer (EUE), flying at about 500 km, is equipped
with a 12-channel 1.1 -only receiver and two oppositely directed antennas, providing a full sky field
of view. Many GPS tracks acquired by EUE look down through the ionosphere, where the added
delay can exceed 50 m. Figure 9 presents typical postfit residual plots for EUE GPS orbit solutions
with both uncorrected 1.1 phase (a) and the inherently noisier but ionosphere-corrected GRAPHIC
observable (b). In the latter case, large ionospheric excursions are entirely absent. Direct compari-
son of orbit overlaps indicates an RMS altitude error of less than 1m in a differential reduced
dynamic EUE solution with the singic-frequency GRAPHIC observable.

¢) Ixtensionto Higher A ltitude Satellites

Above about 3000 km, an orbiter begins to lose coverage from GPS. But since dynamic modeling
error can be small at high altitudes, the dynamic orbit solution can remain strong. By looking
downward to catch the signal spiliover from satellites on (he other side of the earth, an orbiter can
exploit GPS from well above the GPS satellites themselves, outto geosynchronous altitude and
beyond. Alternatively, high satellites can carry GPS-like beacons to be tracked from the ground,
with the GPS satellites serving as reference points, a technique known as inverted GPS. Figure 10
(from WL et al., 1992) plots the average number of GPS satellites that can be tracked by acircular
orbiter as a function of altitude, for both upward- and downward-looking vehicles, where each is
assumed to have a hemispherical field of view. Note that above about 2000 km, the down-looking
user can always track more. The figure also plots the average number of ground sites that can
track a beacon on a circular orbiter, assuming a (en-site global network.
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A study of direct orbit determination with down-looking GPS (Wu ct al., 1992) was carried out for
NASA’s geosynchronous Tracking and Data Relay Satellites (TIDRS). With GPS orbit error
assumed tobe 7 m and clock error 2 m (SA off), a predicted 3-D TDRS position accuracy of 12 m
isreached dynamically after 8 hrs, improving to 9 m after 24 hrs. With SA assumed on, the error
jumps to over 100 m at 8 hrs, declining to 60 m at 24 hrs.

A ground network of a dozen sites can now easily provide sub-meter GPS orbit accuracy. If those
receivers were to track an additional high altitude beacon, all orbits could be estimated in one
solution with comparable relative accuracy, scaled for distance. Wu etal. ( 1992) examined this
inverted GPS tracking for TDRS as well. With assumed data errors of 25 cm for pseudorange and
1 cm for carrier phase at 30 minintervals, and a six-site ground network, the predicted 3-I> RMS
orbit error over a24-hr dynamic solution arc was about 3 m for the TDRS satellites.

) Highly Elliptical Orbiters

Since the preferred tracking modes and solution techniques differ for high and low orbiters, the
application to highly elliptical orbiters, which may descend to afew hundred kilometers and rise to
tens of thousands, present a special challenge. Up- and down-looking GPS combined with
ground-based Doppler during the high altitude phase can provide particularly strong coverage. The
proposed MUSES-B spacecraft, part of the Japanese very long baseline interferometry (VI .BI)
Space observatory Program, was studied by Wuet a. (1992). MUSES-B would move from a
perigec of 1000 km to an apogee of 20,000 km. The investigators applied a reduced dynamic
strategy while the satellite was below 2000 km, and a purcly dynamic strategy clsewhere.
Combined omnidirectional differential GPS and ground-based Doppler gave a predicted orbit error
of 50 e for all position components at apogee, falling to less than 10 cm at perigee.

A similar mission, the proposed International VI.B1 Satellite, would have a perigee of 5000 km,
enabling a purcly dynamic solution around the orbit, Wuet al. (1992) found that with omnidirec-
tional differential GPS and ground-based Doppler, as the apogee increases from 40,000 to
] 50,000 km, position error at apogee increases from about 15 cm to over 2 m. Such accuracy is
nceded for only a select group of missions, Direct GPS orbit determination with omnidirectional
reception could provide 10 m or better accuracy for nearly all highly elliptical orbiters.

6. Dealing with Selective Availability and Anti-Spoof

The two GPS security features, selective availability (SA) and anti-spoofing (AS), can pose
problems for SPS users. Over the years, various strategies have been devised to address them.

a) Anti-Spoofing

Anti-spoofing is the encryption of the P code to prevent mimicking of the signal by others. In the
presence of AS, a conventional SPS receiver would be able to track only the C/A code, recovering
pseudorange and carrier phase on 1..1 only. This would prohibit computation of the standard dual
frequency ionospheric correction. The ionospheric effect of course depends on the altitude and
field of view of the user. Above about 1000 km (and assuming an upward-directed hemispherical
ficld of view), the rare ionosphere permits sub-meter single-frequency orbit accuracy, even with no
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correction. At lower altitudes, as shown on UL, the GRAPHIC calibration used in a reduced
dynamic differential solution can give an orbit accuracy of about 1 m. That approach holds
promise in both real time and post-processing uses for all but the most demanding requirements.

.ow orbiters seeking sub-decimeter performance must turn to dual frequency calibration. ‘1’ here
are several GPSreceiver designs that ope.rate in a codeless or quasi -codeless mode; that is, they
produce carrier phase (and, in some cases, pseudorange) at both frequencies without knowledge of
the precise codes. Although codeless data arc of degraded precision, the typical codeless phase
crror of about 1 cmin 1 sec is consistent with the assumptions used in the studies presented here.
Phase measurement noise, moreover, is generaly not the dominant error in an orbit solution.
Tracking performance will therefore be largel y unaffected by a switch to codeless operat ion.

b) Selective A vailability

SA consists of two measures to degrade positioning accuracy to the unauthorizeduser: the
insertion of errors into the broadcast ephemeris and clock parameters, and “dithering” of the
fundamental oscillator. Neither of these measures poses a problem for differential GPS tracking as
wc have defined it here. Receiver sampling times can be synchronized so that dither effects arc
common to all measurements and drop out of the differential solution. When sampling is not
synchronized, quadratic interpolation to a common epoch can still achieve a high degree of dither
cancellation provided the sampling interval is no longer than about 30 sec (Wuet al, 1990).
Ephemeris and clock errors do not come into play since those quantities are solved for with the
ground data, either together with the user orbit or in advance.

Real lime direct GPSusers encounter more difficulty. Those without access to accurate GPS
orbits computed elsewhere will have to rely primarily on dynamic smoothing to reduce the effects
of both the orbit error and dithering. At nominal SA levels, the broadcast orbit error is 40 m or
less on each satellite. (In recent years, in fact, the broadcast ephemeris has remained uncorrupted
even when dither is active. ) From the vantage of the user, the corrupted orbits will appear to some
degree inconsistent with the GPS measurements and the user’s dynamics-and the dynamic
solution will then attenuate GPS orbit error. Early studies suggest that the error reduction will be
about afactor of two. A 40 m GPS errors may yield a 20 m user error. The actual reduction will
depend on the solution strategy, receiver capacity, field of view, and other factors.

Smoothing of dither error by dynamic filtering has been more thoroughly analyzed. Bar-Sever et
a. ( 1990) smulated the dither process to examine the error reduction as a function of dynamic arc
length. Figure 11 shows the net 3-D error (due to dither only) for smoothing periods ranging from
zero (point positioning) to 6 hrs. The receiver is assumed to track all satellites within a hemisphere
and dither is set at its nominal level. We scc that with no smoothing, the RMS dither error is about
30 m. After 2 hrsthis falls to 5 m, and after 6 hrs to less than 3 m.

A satellite like Topex/Poseidon, which has well modeled dynamics, can realize the full benefit of
dynamic SA smoothing. At altitudes below about 600 km, dynamic model error will begin to
offset the gain from smoothing, and at typical Shuttle altitudes the optimal direct solution may be
little better than the point position solutionunder SA. To improve real time accuracy at low
altitudes, some form of near-rca] time correction must be applied. This could be carried out, asis
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now commonly done for air and surface navigation, with pseudorange corrections derived at
reference sites broadcast directly to users. Systems may soon be in place to send such corrections
over wide areas through geosynchronous satellites (see Vol. 1, Ch. 21). A low orbiter equipped to
receive those corrections could then achieve real t imc posit ion accurac y of afew meters under SA.

7. Summary

The positioning strength provided by GPS is transforming Earth satellite orbit determination. With
even the simplest receiving equipment it is now possible to determine (he position of alow orbiter
instantaneously to tens of meters, sufficient to meet the needs of most missions. The classical
framework of dynamic orbit estimation can be adapted for GF%-equipped satellites in virtualy any
orbit to deliver orbit accuracies beyond the previous state of the art. Many low Earth satell ites now
in the planning stages will carry GPS for basic navigation and timing, and in some cases for direct
scientific uses. Before GPS, orbits below 700 or 800 km could not be considered for altimetric
satellites seeking accuracies of a decimeter or better. GPS promises to deliver fcw-centimeter
accuracy at the lowest altit udes and for the most dynamically ill-behaved platforms. This creates
the opportunity for low-power, low-mass, low-cost altimetry at an altitude of a few hundred
kilometers, and for demonstrating precise sensing instruments on the Space Shulttle.

Figure 12 summarizes the performance that can be achieved as a function of altitude for both real
time direct and after-the-fact differential GPS-based orbit determination. The curves reflect the
optimal estimation strategy for each case. For satellites above 10,000 km the standard differential
technique is replaced by inverted GPS, where the orbiter carries a beacon tracked from the ground.
The differential curve is consistent with the assumption of a dual frequency codeless (S1%)
receiver and is therefore unaltered by the presence of SA (eliminated by differencing) or AS. All
curves for direct estimation assume the use of high quality (2-3 m) GPS orbits and clocks
distributed by civilian services, rather than the broadcast ephemeris, Thus only dither error is
included in the SA-on case. These curves are necessarily approximate, as actual performance will
depend on specifics of the GPS tracking configuration and satellite dynamics. But they offer a
view of the new standard GPS brings to orbit determination for missions of every description.
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TABLE 1. Error Modél for Topex/Poseidon
Orbit Determination Analysis

System Characteristics

Orbit (circular):  1334km,66° inclination
Number of Ground Sites: 6 (including 3 fiducia sites)
Number of GPS Satellites: 18
Flight Antenna Field of View: Hemispherica
Flight Receiver Tracking Capacity: 6 Channels (1.1& 1.2)
Data Types. 1.1 & 1.2 pseudorange
1.1& 1.2 carrier phase
Data Interval: 5 Minutes
Smoothed Data NOISE: 5 cm pseudorange
1 cm carrier phase

Adjusted Parameters & A Priori Errors

Topex/Poseidon Epoch State: | km; 1 n]/see, each component
GPS Satellite States: 2 m; 0.2 mnl/see, each component
Carrier |'base Biases: 10 km
GPS & Receiver Clock Biases: 3 msec (modeled as white noise)
Non-Viducial Ground 1.ocations: 20 cm each component

Fixed Errors Evaluated

Fiducial Site Positions: 5 cm each component

GM of Earth Uncertainty: 1 partin 108
1 arth Gravity Error Model:  0- 100% GEM10-GEMI.2 (20x20)
Zenith Atmospheric Delay Error: 1 cm (modeled as random walk)
Atmospheric Drag Error:10% of Total
Solar Radiation Pressure Error:10% of Total

TABLE 2. Changes from Table 1for Earth Observing System
Kinematic Orbit Determination Analysis

Orbit (circular): 705 km, 98° inclination
Number of GPS Satellites: 24
Flight Receiver Tracking Capacity:  All in View (within hemisphere)
Zenith Atmospheric Delay Error: Adjusted as Random Walk
Fiducial 1L.ocation Error: 3 cm each component
Earth Gravity Error Model:  100% GEM 10-GEMI .2 (20x20)
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TABI Y 3. Changes from Table | for Shuttle
Kinematic Orbit Determination Analysis

Orbit (circular): 300km,28° inclination
Number of GPS Satellites: 24
Number of Ground Sites: 11 (including 3 fiducial sites)
Flight Antenna Field of View: Full Sky
Flight Receiver Tracking Capacity: Ail in View
Smoothed Data Noise: s cm pseudorange
5 mmcan ier phase
Zenith Atmospheric Delay Error:  Adjusted as Random Walk
Fiducial 1.ocation Frror:  1.Scm each component
Earth Gravity Error Model: SO%CiliMIO-CIEM 12 (20x20)

TABI E 4. Key Assumptions for Shuttle Single-l requency
Kinematic Orbit Determination Analysis

Orbit (circular): 300km, 98° inclination
Number of GPS Satellites. 24
Number of Ground Sites: 6 (including 3 fiducia sites)
Flight Receiver ‘I'racking Capacity: All in View (within hemisphere)
Smoothed DataNoise: 10 cm pseudorange (single-freq.)
| cm carrier phase
Zenith Atmospheric Delay Error: Adjusted as Random Walk
Fiducial 1 .ocation Error: 3 ¢ each component
Karth Gravit y Frror Model:  50% GEM 10-GHM1,2 (20x20)
Atmospheric Drag Error: 10% of Total
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(a) Successive Position solutions from pseudorange

(b) Precisetrack of position change from carrier phase

(c) Position solutions derived from adjusting mean
of (h) 10 mean of (a)

Fig. 1. In carrier-pseudorange point positioning, the biasin carrier-based position measurements
is estimated by averaging the difference between carrier and pseudorange solutions. The result
retains the precision and time resolution of the carrier solution, with a small residual bias.

True Path s
Dynamic_ AT e
OmitFit / ~=

/\\
/ «'-"""'” \

~

th-/?:
Residual

Fig. 2. The. kinematic orbit determination technique effectively reconstructs the observed trajectory
from the residuas of a dynamic orbit solution.
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Fig.3. The purely dynamic orbit solution minimizes the contribution of random error, while
dynamic model error is fully expressed; this is reversed in the kinematic solution. The reduced
dynamic solution yields an intermediate level of each error and can minimize. overal error.
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Fig. 4. In precise orbit determination with differential H’S, user and ground observations of GPS
arc combined to determine user, GPS, and some ground positions with respect to a subset of
ground reference or “fiducial” sites.
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orbit determination and four data combinations. Key assumptions are shown in Table 2.
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